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Abstract 

The purpose of this paper is to disseminate the outcome of discussions of a working group 

formed to consider the principles of neural plasticity that might relate to speech motor control 

disorders. The working group consisted of specialists in speech motor control who accepted the 

invitation of the Brain Rehabilitation Research Center, a Veterans Administration Rehabilitation 

Research and Development Center of Excellence, to convene to address the issues of neural 

plasticity and rehabilitation of speech disorders. The agenda was to identify potential directions 

for translational research on how environmental manipulations, and training in particular, could 

enhance neuroplasticity and recovery of function in neurological diseases and disorders. The 

group identified potential opportunities for the translation of principles from basic neuroscience 

into clinical research on the rehabilitation of neurogenic speech motor control disorders. Such 

disorders include the various forms of dysarthria and apraxia of speech secondary to stroke, 

nerve injury, neurodegenerative disease, brain tumors, or trauma (Duffy, 2005). Idiopathic 

disorders such as spasmodic dysphonia, oral-mandibular dystonia and essential tremor affecting 

the head and neck were also discussed. Subsequent to the meeting a manuscript was drafted and 

underwent considerable revision as additional information was incorporated over the next two 

years. Some of the concepts of neural plasticity that are described in greater detail in an 

accompanying manuscript (Kleim & Jones, in press), may or may not apply to speech motor 

control. Suggestions are provided to stimulate the consideration of translational research on the 

role of neural change in rehabilitation and recovery of speech motor control disorders. 
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I. Definition of Neural Plasticity 

Neural plasticity is the ability of the central nervous system (CNS) to change and adapt in 

response to environmental cues, experience, behavior, injury or disease. Neural plasticity can 

result from a change in function within a particular neural substrate in the CNS through 

alterations in synaptic strength, neuronal excitability, neurogenesis or cell death (Brosh & 

Barkai, 2004). Changes in the function of a neural substrate can then alter behavior secondary to 

environmental influences such as experience, learning, development, aging, change in use, injury 

or response to injury such as unmasking due to the loss of surround inhibition with reduced 

afferent input (Tinazzi et al., 1998; Urasaki, Genmoto, Wada, Yokota, & Akamatsu, 

2002; Ziemann, Hallett, & Cohen, 1998). Behavioral changes can also result from compensation, 
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when residual neural substrate(s) are used to perform impaired functions, as may occur at some 

point during recovery from aphasia (Saur et al., 2006). Neural plasticity may also alter the 

function of the original neural substrate used to produce a behavior through neuronal sprouting 

and dendritic growth (Bellemare, et al., 1973). Although plasticity can be observed across 

multiple elements of the nervous system including the cerebrovasculature and glia (Magistretti, 

2006; Yiu & He, 2006), the focus of this paper is on the role of experience dependent change in 

neural function at the level of the synapse as proposed by Hebb in the 1940s (Hebb, 1949). 

Go to: 

II. Principles of Neural Plasticity 

Several principles of neural plasticity have been proposed on the basis of animal research 

showing changes in synaptic processing in the cortex. Research in rats, for example, has shown 

that motor training will alter neural signaling pathways by up-regulating early immediate gene 

expression, such as c fos expression, which in turn can alter protein translation (Kleim, Lussnig, 

Schwarz, Comery, & Greenough, 1996). Changes in neuronal activity can produce changes in 

neurotransmission and synaptic strength. Synaptic plasticity produces changes in intracortical 

microcircuitry altering the topography of cortical maps. These changes can provide the basis for 

long term changes in motor performance, see Figure 5 in Monfils, 2005 (Monfils, Plautz, & 

Kleim, 2005). Changes in synaptic function can induce activity in previously silent latent 

connections (unmasking) or dendritic sprouting in animals (Bellemare, Woods, Johansson, & 

Bigland-Ritchie, 1973; Brosh & Barkai, 2004). That such changes are also occurring in the 

human cortex can only be hypothesized; indirect support comes from observed alterations in 

cortical physiology (Cohen et al., 1998). The relevance of alterations in neuronal function to 

speech motor control has yet to be examined. The principles reviewed by Kleim and Jones (in 

press) are discussed with particular reference to speech and voice functioning following brain 

injury or in neurodegenerative disease. It is recommended that some of these principles will need 

to be addressed by carefully designed studies with appropriate controls to assess the degree of 

plasticity possible in the neural substrates involved in human speech and voice production. 

i. The Effect of Use on Neural Substrates 

The first principle of neuroplasticity is that if a neural substrate is not biologically active, it will 

degrade in function. Merzenich and colleagues in the 1980s demonstrated that following the loss 

of sensory input from the hand to the cortex in adult owl and squirrel monkeys; cortical 

somatosensory representation for that body part became reduced (Kaas, Merzenich, & Killackey, 

1983; Merzenich et al., 1983). Conversely, the same research group demonstrated that by 

increasing environmental input, cortical representation can be altered or enhanced (Nudo, 

Jenkins, & Merzenich, 1990). Following brain injury, further cortical loss may occur in the 

absence of retraining if functions formerly represented in the lesioned zone do not reappear 

spontaneously in adjacent cortical regions (Friel, Heddings, & Nudo, 2000; Nudo & Milliken, 

1996). Although this is unstudied in speech motor control following brain injury, it may be 

relevant to rehabilitation strategies and important for motor retraining. For example, to determine 

the degree to which disuse affects speech following head injury, two groups of patients might be 

compared. The first group might be encouraged to speak aloud to a group at least two hours a 

day and the other group allowed to use computer projection of written expression with nonverbal 
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facial or oral expression also in a group setting for at least two hours a day. In this way both 

groups have similar involvement in language formulation, covert and interpersonal non-speech 

communication while only one group is using speech production. By combining clinical studies 

with functional and structural neuroimaging, the effects of use or disuse on the cerebral activity 

for speech can be determined. 

ii. Usage Improves Function 

This principle, an extension of the first, states that with increased biological activity, future 

functioning can be enhanced. Over the last decade an emerging literature has demonstrated that 

training can lead to an enhancement of both function and structure of the neural mechanisms 

involved in that behavior (Carr & Shephard, 1999; Cohen et al., 1998; Nudo, 2003; Rioult-

Pedotti, Friedman, & Donoghue, 2000; Rioult-Pedotti, Friedman, Hess, & Donoghue, 1998). 

Most of this research involves training reaching behaviors in rats (Rioult-Pedotti, Friedman, & 

Donoghue, 2000; Rioult-Pedotti, Friedman, Hess, & Donoghue, 1998) or relatively simple 

movements in humans (Morgen, Kadom, Sawaki, Tessitore, Ohayon, McFarland et al., 2004). It 

is unknown whether or not the potential for recovery with retraining of reaching movements is 

the same as that for complex, over-learned, relatively automatic motor behaviors such as speech. 

Several differences are apparent between limb and speech movements: speech movements are 

learned throughout childhood, are used for several hours on a daily basis throughout a lifetime, 

and speech gestures require precision to achieve auditory targets. Only a few limb movements 

are equivalent such as writing, typing and piano playing that are used daily only in certain 

careers. Although some studies have shown neural plasticity of brain function for language 

following intensive training (Louis et al., 2001) or surgery (Voets et al., 2006), the potential for 

neural plasticity in the speech motor system with rehabilitation is not well known. In a case study 

of spontaneous recovery from cortical dysarthria post stroke without retraining, functional 

magnetic resonance imaging (fMRI) showed a selective shift of the cortical representation for 

speech motor control to the right Rolandic cortex and the left cerebellum (Riecker, Wildgruber, 

Grodd, & Ackermann, 2002). This differs from recent findings in limb control and aphasia where 

recovery was greatest when neural control returned to the original, involved hemisphere such as 

the contralateral hemisphere for an affected limb (Serrien, Strens, Cassidy, Thompson, & Brown, 

2004) or to the left hemisphere for language recovery in aphasia (Saur et al., 2006). 

It is important to determine if motor retraining alters brain function. To determine the effects of 

training on the recovery of brain function will require a non-treated control group to account for 

spontaneous recovery, which occurs without training and is expected to be greatest in the first 

three months post stroke or trauma. For speech production, it needs to be established whether 

retraining induces a return of function to the original neural substrates in the left primary 

orofacial cortex or whether alternate substrates such as in the somatosensory region are invoked 

(Jang et al., 2005). We need to establish which types of intervention will enhance the return of 

speech production following brain injury or in disease. By studying the results of different 

methods of rehabilitation we can identify the most effective strategies for recovery and which 

strategies are maladaptive. 

Finally, speech production may differ from other movements in the effect of practice. In one 

study of short term learning in persons with cerebellar atrophy, demonstrated a difference in the 

effects of learning between speech and non-speech movements within groups of healthy 
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volunteers and persons with cerebellar pathology. Although there were no differences between 

groups on either speech or non-speech movements, there was a difference in the effects of 

learning between speech and non-speech movements within both groups. Speech movements 

improved with practice while non-speech movements did not improve with practice in either 

group (Schulz, Dingwall, & Ludlow, 1999). This suggests that speech movements may have 

greater potential for retraining than non-speech movements in both patients with neurological 

disorders and healthy volunteers. Perhaps there are corresponding differences in the degree of 

change in cortical physiology in response to training for speech and non-speech tasks. It cannot 

be assumed that the type of pattern of cortical or behavior adaptations are equivalent for speech 

and non-speech tasks and speaks to the importance of this research in speech motor control. 

iii. Plasticity is Experience Specific 

This principle suggests that changes in neural function with practice may be limited to the 

specific function being trained. This is relevant to speech rehabilitation and suggests that training 

on lip strength, for example, may only benefit the neural control for lip movement and force but 

may not spontaneously “transfer” to speech production. This principle suggests that changes may 

occur only in the neural substrates involved in the particular behavior being trained (Kleim et al., 

2002). This principle is distinct from the concept of cross-transfer when an untrained limb 

improves in performance to the same degree as the trained limb on the opposite side. In cross-

transfer motor training on one side facilitates motor neuron firing in the contralateral muscle 

group (Nagel & Rice, 2001). Cross-transfer is likely due to alterations in spinal cord pathways, 

rather than changes in cortical control for the untrained limb. 

A long-standing debate within the speech community is to whether or not training on non-speech 

oral behaviors will enhance speech production (Clark, 2003; Weismer, 2006). For example, 

myofunctional therapy for the lingual musculature has been used (Ray, 2003) under the 

assumption that there will be transfer of increased function to speech production. One report 

found that training involving non-speech oral motor behaviors was helpful in a series of cases 

(Dworkin & Hartman, 1979), although no control group was included for comparison. On the 

other hand, others reported that non-speech oral movements were unrelated to residual speech in 

persons with dysarthria (McAuliffe, Ward, Murdoch, & Farrell, 2005; Solomon, Robin, & 

Luschei, 2000). Further, diadochokinetic syllable repetition skills and speech production rate and 

accuracy are often unrelated in adults with speech motor control disorders (McAuliffe, Ward, 

Murdoch, & Farrell, 2005), suggesting that training on diadochokinetic movements may not 

spontaneously improve speech. One reason for this difference may be that diadochokinetic 

syllable repetition does not require formulation of a new utterance for speech 

expression/communication. The neural substrates involved in speech repetition seem to be 

restricted to the left anterior insula, a localized region in the lateral premotor cortex, and the 

posterior pallidum (Wise, Greene, Buchel, & Scott, 1999) while speech expression likely 

involves a broader network of brain regions (Donnan, Carey, & Saling, 1999). 

These issues can be examined using functional neural imaging to determine if the brain 

substrates involved in speech and non-speech behaviors are the same or different. A study of 

healthy speakers showed silent tongue movements produced symmetric brain activation in the 

right and left primary motor regions while phonation or phonation combined with tongue 

movements produced clusters of activation primarily in the left hemisphere (Terumitsu, Fujii, 
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Suzuki, Kwee, & Nakada, 2006). In another study, syllable production activated regions in the 

left inferior frontal gyrus, left middle frontal gyrus, the caudate nuclei and the thalamus, whereas 

non-speech oral movements activated areas in the primary motor cortex.(Bonilha, Moser, 

Rorden, Baylis, & Fridriksson, 2006). Although the repetition of isolated syllables is not 

equivalent to speech production, this study suggests that even at the syllable production level 

there are both commonalities and differences in the neural substrates that are involved in speech-

like and non-speech oral behaviors. Studies comparing changes in CNS function following 

training are required to determine if activity in similar or different neural substrates are enhanced 

during training using speech versus non-speech tasks. 

Also related to the speech versus non-speech debate is the relevance of strength training to the 

rehabilitation of dynamic rapid movements that are needed for speech production. In general 

muscle forces used for speech are between 10 to 20 % of maximum for the lips (Barlow & Abbs, 

1986) and activation of the laryngeal muscles for speech is between 10 and 20 % of maximum 

(Ludlow & Lou, 1996). Overall, the maximum force that can be produced is likely to be of much 

less consequence for speech production than the precision of low levels of force control (Barlow 

& Netsell, 1986). Some basic research in the rat has shown that motor skill training induces 

synaptogenesis and motor map reorganization while strengthtraining does not (Remple, Bruneau, 

VandenBerg, Goertzen, & Kleim, 2001). One study found that strength gains in the early phase 

of an arm muscle training regimen were associated with an increase cortical excitability (Griffin 

& Cafarelli, 2006) while another in humans compared arm skill training with strength training 

and found increases in cortical excitability only occurred with skill training (Jensen, Marstrand, 

& Nielsen, 2005). Exercise alone, as opposed to skill training, may not alter motor map 

organization although it induces angiogenesis in the rat (Kleim, Cooper, & VandenBerg, 2002). 

Different adaptive changes may be evoked with strength training than those that occur with skill 

training (Jensen, Marstrand, & Nielsen, 2005). Also the relative benefits of strength and skill 

training should take into account the diverse neural substrates affected in different neuromotor 

disorders. For example, persons with diseases that affect motor neurons or the strength of 

synaptic inputs to excite motor neurons may benefit more from strength training than adults with 

a motor programming disorder, such as apraxia. These issues need to be examined systematically 

using functional neural imaging to compare brain changes during strength retraining versus 

training emphasizing voice and speech production skills in groups of adults with different 

neuromotor speech disorders. Transcranial magnetic stimulation (TMS) may be one technique 

for examining the effects of skill or strength training on motor map re-organization, however, the 

accuracy of mapping cranial muscles using TMS is less reliable than for limb muscles (Ludlow 

et al., 1994) 

iv. Repetition of Training 

This principle states that changes in neural substrates will occur only as a result of extensive and 

prolonged practice and that neural changes may not become consolidated until later in the 

training process (Kleim et al., 2004). Stimulation induced synaptic strength also requires a 

sufficient number of stimuli to induce long term potentiation (LTP) in animals (Lisman & 

Spruston, 2005). The number of repetitions per session and the number of sessions required for a 

behavior to become consolidated needs to be established for speech and voice motor control 

rehabilitation. 
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Although the importance of repetition/practice in consolidating a motor skill is well supported, 

which type of practice should be used is less clear. There may be species and population 

differences in the mechanisms involved in learning. Some of the human motor learning literature 

suggests that massed repetition for training complex skills may not be as effective as inter-

leaving recall trials or withdrawal of knowledge of results during motor learning in humans 

(Wulf, Lee, & Schmidt, 1994; Wulf, Schmidt, & Deubel, 1993). However, motor learning 

for speech in brain injured adults may differ both from animal models and from learning in 

healthy adults. Differences occurred between children and adults when learning a non-speech 

oral motor task (Clark, Robin, McCullagh, & Schmidt, 2001) and also when learning novel non-

words (Walsh, Smith, & Weber-Fox, 2006). Age may be an important consideration when 

designing training protocols in addition to the motor task (connected speech) and populations 

involved (different neurological diseases and disorders). 

v. Intensity of Training 

The principle that training must be continuous over long periods to induce neural change in 

animals (Fisher & Sullivan, 2001) is currently employed in neurorehabilitation programs (Teasell 

& Kalra, 2005). In animal models, long term potentiation of synaptic strength requires a 

sufficient level of stimulus intensity (Lisman & Spruston, 2005). However, several additional 

factors need to be considered for speech rehabilitation. If a participant is easily fatigued, for 

example, intensive retaining may not be appropriate, particularly in persons with motor neuron 

disease. A person’s medical status and other factors should be considered before assuming that 

intensive training can produce behavioral changes and neural plasticity. Maladaptive responses 

to intense motor treatment programs can include fatigue and muscle damage with variable 

responses dependent on the etiology of the disorders being treated (Gabriel, Kamen, & Frost, 

2006). Before the appropriate intensity for speech rehabilitation training can be determined we 

need to identify factors that support or contradict high-intensity training in particular 

neuromuscular disorders. 

vi. The Time of Training Onset 

This principle states that different forms of neural plasticity may occur at various times in 

response to treatment. For example, during motor skill training in rats, changes in neuronal 

activity precede synaptic formation (Kleim, Lussnig, Schwarz, Comery, & Greenough, 1996), 

which are then followed by motor map reorganization (Kleim et al., 2004). Further, change in 

neuronal function is more likely to occur during the early spontaneous recovery period following 

brain injury, both in animals (Kleim et al., 2003; Plautz et al., 2003) and humans (Lendrem & 

Lincoln, 1985). Carefully designed studies need to examine possible interactions between time 

post injury or disease onset and the timing of treatment regimens. This need was also identified 

in evidence-based reviews of therapies for adults with dysarthria (Deane, Whurr, Playford, Ben-

Shlomo, & Clarke, 2001a, 2001b). Functional brain imaging may be helpful for determining how 

the timing of training initiation and training duration might influence the ability to induce 

changes in brain function for speech. 

vii. Salience of Training 
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The principle that training must be sufficiently salient to induce plasticity may be of considerable 

importance to speech. That is, simple repetitive movements or strength training may not 

enhance skilledmovement and may have less potential for inducing changes in neural function 

underlying voice and speech production for communication. Neural plasticity may be enhanced 

when the movement is purposeful and related to the behavior being trained (Morgen, Kadom, 

Sawaki, Tessitore, Ohayon, Frank et al., 2004; Plautz, Milliken, & Nudo, 2000; Remple, 

Bruneau, VandenBerg, Goertzen, & Kleim, 2001). Reorganization within the auditory cortex 

requires that the tone be salient to the animal and engage attentional brain mechanisms (Kilgard 

& Merzenich, 1998). Similarly, training in voice and speech may need to involve meaningful 

communication. Functional brain imaging could address the degree to which meaningful speech 

communication may activate a different brain network than that used for syllable repetition, for 

example. 

viii. Age Effects on Training 

Although neural plasticity can occur over the entire lifespan, it is well recognized that training 

and environmentally induced plasticity occur more readily in younger than in older nervous 

systems (Kramer, Bherer, Colcombe, Dong, & Greenough, 2004; Sawaki, Yaseen, Kopylev, & 

Cohen, 2003). Differences in human non-speech motor learning have been found with age 

(Clark, Robin, McCullagh, & Schmidt, 2001). It is unknown whether learning some aspects of 

speech production, such as consonant articulation, may be more affected by aging than others. 

The degree to which speech can be retrained and whether changes in neural function can occur 

with retraining could provide information on the limits for rehabilitation of different speech 

attributes in different age groups. 

ix. Transference 

The principle of transference states that plasticity following training in one function may 

enhance related behaviors and has been studied both in animals and human rehabilitation (Chu & 

Jones, 2000; Frost, Barbay, Friel, Plautz, & Nudo, 2003; Jones, Chu, Grande, & Gregory, 

1999; Spengler et al., 1997). This principal appears inconsistent with the principal of training 

specificity (iii) mentioned earlier. Possibly transference may be more likely to occur following 

some therapies than others. For example, training using “loud speech” enhanced swallowing in a 

group of persons with Parkinson disease (PD) (Sharkawi et al., 2002) suggesting transference. 

However, a controlled trial is needed to compare these effects with another therapy on 

swallowing. A comparison therapy group is needed to determine if a particular therapy is 

responsible for the enhancement of another behavior or whether transference occurs regardless of 

the type of therapy. 

x. Interference 

The interference principle is that plasticity can cause changes in neural function, which may 

interfere with behaviors or skills. For example, dystonic-like limb postures can develop 

following repetitive strain injuries with prolonged training in monkeys (Byl et al., 1997; Byl, 

Merzenich, & Jenkins, 1996). In another application of this principle, reducing input to, or 

restricting the use of the unaffected limb, can enhance training effects in the affected limb after 

stroke (Kopp et al., 1999). Thus retained functions may interfere with the recovery of lost 
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functions after injury (Bury et al., 2000; Bury & Jones, 2002, 2004). Perhaps enhancing some 

speech or voice skills such as articulation might interfere with other aspects of speech production 

such as prosody or rate. Such questions can be addressed in small carefully designed feasibility 

studies as has been done for limb movement (Kopp et al., 1999). Neurophysiological recordings 

can quantify the change in neural function associated with retraining of various behaviors. 

Go to: 

III. Potential Role of Neural Progenitors and Growth Factors to Enhance 
Recovery 

Recent animal studies have idenitified two adult mammalian brain regions that contain 

endogenous neural progenitor cells capable of producing new neurons. Those in the 

subventricular zone produce neuroblasts that migrate to the olfactory bulb, while others are in the 

dentate gyrus of the hippocampus (Lichtenwalner & Parent, 2006). Hippocampal progenitors 

release new neurons with learning while growth and neurotrophic factors can enhance adult 

neurogenesis in rodents (Nakatomi et al., 2002). Several neurotrophic factors such as brain-

derived neurotrophic factor (BDNF) can enhance neurogenesis (Kruger & Morrison, 

2002; Lichtenwalner & Parent, 2006). Of particular relevance is the evidence that many types of 

brain injuries, including ischemia, can enhance the generation of neurons by progenitors in the 

adult mammalian brain with neuronal migration to the area of injury (Nakatomi et al., 2002). The 

intraventricular infusion of exogenous growth factors has potential to enhance this process, 

although the long-term survival and functionality of such neurons remains an unexamined issue 

in the adult human brain post stroke (Lichtenwalner & Parent, 2006). These mechanisms of 

progenitor enhancement hold great promise but may be reduced in the stroke population because 

of reduced effects of endogenous growth factors with age (Hattiangady, Rao, Shetty, & Shetty, 

2005). However, if infusion methods were developed which could be applied in humans these 

might be combined with behavioral and environmental therapies to enhance functional recovery 

post brain injury. 

Go to: 

IV. Application of these Principles to Speech Motor Control Recovery 
and Rehabilitation 

Studies are needed to determine if the principles described above can be applied to the study of 

neural mechanisms involved in motor speech functioning and rehabilitation in a systematic 

fashion. For effective training methods already identified, the study of how such techniques alter 

neural function involved in speech production could increase understanding of the mechanisms 

involved in speech recovery and guide the development of new therapies. For example, it would 

be important to know whether emphasis should be placed on invoking alternate brain 

mechanisms for speech recovery or if the return of function in the original substrates is needed. 

To date only a few well controlled treatment trials in speech motor control disorders have been 

published which demonstrate effective treatments for a few speech/voice disorders (Deane, 

Whurr, Playford, Ben-Shlomo, & Clarke, 2001a, 2001b; Ramig & Verdolini, 1998; Sellars, 

Hughes, & Langhorne, 2001, 2002, 2005; Yorkston, 1996; Yorkston & Spencer, 2003). Lee 

Silverman Voice Therapy (LSVT) had greater benefit than a placebo treatment (i.e. respiratory 
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training where the participants passively breathed out) in aiding persons with PD (Ramig, 

Countryman, O’Brien, Hoehn, & Thompson, 1996; Ramig et al., 2001; Ramig, Sapir, Fox, & 

Countryman, 2001).. Also in PD, prosody treatment with visual feedback was found more 

effective than prosody treatment without visual feedback (Scott & Caird, 1983). Although only 

well controlled studies can identify which types of treatments can induce significant and long-

lasting improvement in persons with speech motor control disorders, exploratory small trials 

could identify potential new treatment approaches for specific populations at different levels of 

severity and time post onset (Deane, Whurr, Playford, Ben-Shlomo, & Clarke, 2001a, 2001b). 

Those found to have potential could then be evaluated along with functional brain imaging to 

then determine how the return of speech function is re-established in the brain. 

Some of the issues that are of specific importance to speech rehabilitation include: whether 

oromotor strength training will have transference to aid the return of speech production skills; 

whether training paradigms developed for spinal systems pertain to craniofacial bulbar systems 

and, whether speech production skills, which are normally automatic and precise by adulthood 

(Smith & Zelaznik, 2004), can be relearned in post adolescent and aging brain-injured adults. 

There are limits to neural plasticity following adult brain injury, and these limits need to be 

determined for speech communication. Small, well-controlled experimental feasibility studies on 

the rehabilitation of motor speech and voice disorders would be the first step. 

Go to: 

V. Approaches to Translational Research 

Translational research is an interactive process between basic research, translation studies and 

feasibility studies. Basic studies, in this context, necessitate both (1) animal studies of neural 

plasticity processes and the effects of disease on cell loss or synaptic function and (2) human 

studies aimed at measuring behavior and brain function using functional neuroimaging such as 

positron emission tomography (PET) and fMRI, electrophysiological recordings such as 

magnetoencephalography (MEG) and electroencephalography (EEG), and testing techniques 

such as transcranial magnetic stimulation (TMS). Translational studiesinvolve either animals or 

humans to examine how changes in neural functioning (neural plasticity) due to training are 

modified by aging, developmental or disease processes. These translational studies then serve as 

the bases for designing feasibility studies, which are small group or pilot studies with well 

defined hypotheses, experimental controls and specific adult populations. Feasibility studies are 

designed to determine if training, stimulation or constraints can alter both behavior and neural 

functioning in persons with motor speech disorders. A constant interaction between concepts 

from basic research, translational studies, and feasibility studies is necessary as scientists and 

clinicians explore new concepts for modifying neural function and behavioral performance. 

i. Basic Research in Neuroplasticity 

The purpose of basic research is to identify the particular neural mechanisms underlying change 

in CNS function during development, aging, disease and injury. Next, it can be determined how 

these processes can be modified by environmental manipulations such as training or sensory 

stimulation. 
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Animal models of disease can be developed using neurotoxins to induce specific cell death or to 

emulate a neurodegenerative process. For example, retrograde transport of a neurotoxin within 

efferent axons could induce motor neuron cell death to provide a model of amyotrophic lateral 

sclerosis. Similarly, administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) will 

produce marked lesions in the nigrostriatal pathway as a model for PD. Neuronal activation and 

synaptogenesis can then be examined with and without environmental manipulation or training 

in animal models. Immunohistochemistry can detect and quantify c fos expression (an immediate 

early gene expressed during neuron firing) and quantitative electron microscopy can be used to 

measure synaptic density on neurons in experimental and control animals (Kleim, Lussnig, 

Schwarz, Comery, & Greenough, 1996). Repetitive skills training can be used to determine 

whether such manipulations might put additional strain on motor neuron physiology in motor 

neuron disease causing increased rates of cell death. Middle cerebral artery occlusion, can be 

used to produce animal models for stroke and allow for the study of the neural effects of 

repetitive skills training on neuronal firing and synaptogenesis in regions both inside and outside 

the infarct area. 

ii. Using Brain Imaging to Identify the Neural Substrates Involved in Speech Motor 

Control 

Research in humans is needed to determine the neuronal substrates involved in healthy speech 

production and their potential for plasticity (Guenther, Ghosh, & Tourville, 2005; Ingham, 

Ingham, Finn, & Fox, 2003). Because speech is unique to humans there cannot be an adequate 

animal model for speech. However, some relevant elements can be studied. For example, vocal 

learning is extensive in song birds, although the avian CNS is not as close to the human system 

as the CNS of non-human primates (Gil-da-Costa et al., 2006). The range of vocal behavior that 

can be learned in the non-human primate, however, is limited when compared to the human 

(Jurgens, 2002). The CNS control for voice and speech, therefore, is best determined using 

human brain imaging technology to identify the neural substrates involved (Huang, Carr, & Cao, 

2002). Methods such as fMRI and PET can be used to determine how these neural substrates can 

be modified through learning, development, aging and following disease. 

fMRI is a non-invasive tool which reflects changes in neuronal firing within neural substrates by 

quantifying blood oxygenation level dependent (BOLD) changes. Brain activity coincident with 

speech production can be quantified using event-related or sparse sampling paradigms. Delayed 

sampling of the hemodynamic response which reaches its peak approximately 6 seconds after 

speech is produced, avoids movement artifacts induced during speaking (Birn, Bandettini, Cox, 

& Shaker, 1999). A recent fMRI study of paced syllable repetitions (Riecker et al., 2005) 

provides evidence for two levels of speech motor control, one which is apparently related to 

motor preparation and the other to execution processes. The same study gave insight into the 

types of abnormal speaking rates that occur in PD and cerebellar disorders. 

PET can also be used to study brain activation for speech and/or voice production. PET has less 

temporal and spatial resolution than fMRI although more recent developments have increased its 

spatial resolution. PET scanning measures the uptake of radio-labeled isotopes such as oxygen 

(O 15) over a one minute period to reflect the aggregate of neuronal activity occurring during 

speech or voice production (Schulz, Varga, Jeffires, Ludlow, & Braun, 2005). PET is most useful 

for examining particular neurotransmitter functions in the brain using radiolabeled ligands for 
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selected transporters or receptors that may reflect disease abnormalities (Kugaya et al., 2003). 

New radiolabeled ligands include serotonin transporters, serotonin 5-HT-1A receptors (Fu et al., 

2002), dopamine D1 receptor, dopamine D2 receptor antagonists, and D2 receptor agonists (van 

Dyck et al., 1996), to mention just a few. PET with fluorodopa can detect the early loss of 

dopaminergic neurons in pre-symptomatic PD by quantifying reduced dopamine turnover in the 

nigrostriatal pathway in participants (Brooks et al., 2003; Ravina et al., 2005). Such techniques 

can measure the effects of intervention on the disease process itself, that is, neuronal cell death in 

the nigrostriatal pathway. 

Two studies have used PET scans to measure cerebral blood flow during speech tasks pre-and 

post- treatment in persons with PD. In one, increased activation of motor and premotor cortex 

(M1-mouth, supplementary motor cortex, and inferior lateral premotor cortex and primary motor 

cortex) was reported during speech in adults with PD before LSVT (Liotti et al., 2003). These 

abnormal activations were shown to significantly reduce after LSVT. On the other hand, Pinto 

and colleagues examined persons with PD who had been implanted with deep brain stimulators 

(DBS) in the subthalamic nucleus and scanned them with the stimulator turned on and off 

without medication (Pinto et al., 2004). With the stimulators turned off PET scans showed 

speech related activity was abnormally reduced in the primary motor, premotor and right 

supplementary regions. With stimulation, activation increased in the same regions and was 

similar to the healthy controls. Differences in these two studies may relate to the presence or 

absence of medication; in the Liotti (2003) study persons with PD were on medication while in 

the Pinto (2004) study participants were un-medicated for 12 hours prior to scanning. Further 

study is needed with appropriate control groups to determine what changes occur in brain 

activity with and without intervention and medication during speech in adults with PD. 

One of the issues with using functional neuroimaging with speech motor control disorders is that 

affected adults often find speech more effortful than the controls and may have heightened brain 

activity as a result. This difference in effort renders the results difficult to interpret. It is not 

known if the heightened cortical activity is simply a reflection of the affected adults’ difficulty 

with the task or if it reflects the pathophysiology underlying the speech disorder. Here 

comparisons between the affected adults and controls on an unaffected task such as listening to 

speech might provide another measure of pathophysiology, although consideration has to be 

given to whether patients may also have auditory signal processing abnormalities as evidenced 

by delayed or reduced brain stem evoked potentials (Gawel, Das, Vincent, & Rose, 1981). 

PET fluorodopa can also be used in a controlled study to determine if a particular therapy can 

slow the disease processes in persons with PD. Future PET studies with different 

neurotransmitter ligands could address the role of various neurotransmitters in the speech 

production network in normalcy and in disease. In addition, PET technology could identify the 

neural substrates that might be the target for neuropharmacological manipulation for combined 

therapies including both speech rehabilitation and medication. 

MEG and EEG both have high temporal resolution needed to examine rapid changes in neuronal 

firing prior to motor tasks. Because jaw muscle activation for speech interferes with recording 

small electrical or magnetic potentials, neither of these technologies can easily be used for the 

study of speech production. Nevertheless, brain activity during speech preparation can be studied 

with MEG or EEG by examining the change in dynamic interplay between onsets and/or peak 

changes in neuronal activity in different brain regions prior to speech execution (Salmelin, 
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Schnitzler, Schmitz, & Freund, 2000). The intervals between activation in two neural substrates 

prior to speech may be disorganized following injury and recovery of the normal pattern might 

relate to intervention benefits in persons with speech motor control disorders. 

TMS has been used extensively to map cortical regions controlling muscles for hand and limb 

control (Cohen, Hallett, & Lelli, 1990) and to assess changes in cortical excitability before and 

after training in normalcy and disease (Classen, Liepert, Wise, Hallett, & Cohen, 1998; Ziemann, 

Chen, Cohen, & Hallett, 1998). This technique has not been applied frequently to facial or 

laryngeal muscles because 1) the motor cortex for these regions is deeper and less accessible and 

2) the magnet is closer to cranial nerves in the periphery resulting in peripheral responses which 

can confound central responses (Benecke, Meyer, Schonle, & Conrad, 1988; Cruccu, Beradelli, 

Inghilleri, & Manfredi, 1990). Recent technical changes such as coil orientation and size may 

improve the validity and reliability of this technique for studying the cranial musculature 

(Desiato, Bernardi, Hagi, Boffa, & Caramia, 2002; Guggisberg, Dubach, Hess, Wuthrich, & 

Mathis, 2001). TMS may be useful for measuring corticobulbar transmission and changes in 

cortical excitability before and after training (Cohen et al., 1998), which could offer important 

insights into speech motor control. 

Several caveats and challenges underlie the use of functional neuroimaging to study 

neuroplasticity. First as behavioral performance changes in an individual, the brain substrates 

activated during that behavior are likely to change not necessarily due to changes in synaptic 

physiology (Poldrack, 2000). As a person become more skilled on a motor task their mode of 

behavior and brain activation may change. For example, during procedural learning when 

declarative knowledge emerges additional brain regions are likely to be activated (Willingham, 

Salidis, & Gabrieli, 2002). Associated changes in the pattern of brain activation likely result 

from alterations in performance strategies rather than changes in synaptic physiology. Other 

performance changes, such as more rapid response times, may also alter measures of brain 

activation particularly on BOLD fMRI. If a subject initially takes several seconds to perform a 

task the hemodynamic response will be prolonged. This will change when the individual 

becomes more skilled and performs the gesture within a second resulting in a shorter 

hemodynamic response that may reduce the measured BOLD response. Therefore, great caution 

must be used when interpreting changes in functional neuroimaging during recovery of function. 

As has been pointed out, limited information is available on “the biophysical effects of plastic 

neural changes on functional imaging signals” (Poldrack, 2000)p. 1. Therefore relating changes 

in functional neuroimaging measures requires caution and awaits further basic research. 

Another difficulty with interpretation of functional neuroimaging results is that increased blood 

flow or blood oxygenation may occur as a result of synaptic activity that is either inhibitory or 

excitatory, complicating interpretation of both PET and fMRI results. fMRI measures of BOLD 

contrast percent oxygenation change between two states. Therefore, brain activity in one state 

can only be measured relative to another state, often a resting state. With PET, blood flow can be 

measured both at rest and during an activated state, which provides an added benefit if there are 

alterations in resting brain activity due to disease or a brain lesion. 

Functional neuroimaging has inherent issues regarding group analyses as these require locating 

corresponding neuroanatomical locations across brains. Several approaches have been used such 

as fitting brains to a standard space either based on an atlas of one brain or several brains from 

the Montreal Neurological Institute, although none are satisfactory given the inherent variability 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R120
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R154
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R154
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R33
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R106
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R147
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R147
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364711/#R106


in gyri and sulci and well as cytoarchitecture between brains (Devlin & Poldrack, 2007). The 

preferred approach would be to locate the anatomical structures on individual brains (Fadiga, 

2007), although this is extremely labor intensive and is seldom used. To study change in brain 

function within individuals, however, the individual approach to data analysis and for aligning 

functional change to neuroanatomy may be required. 

Structural neuroimaging is now demonstrating significant alterations in both grey matter volume, 

using voxel based morphometry (Ashburner & Friston, 2000), and alignment within white matter 

tracts, using diffusion tensor imaging to measure the degree of fractional anisotropy of water 

molecules aligned along white matter bundles(Buchel et al., 2004; S. M. Smith et al., 2006). 

Recent studies have shown transient anatomical changes in grey matter as a result of motor skill 

training (Draganski et al., 2004) and more long term as a result of extensive musical training 

(Gaser & Schlaug, 2003). Further differences in white matter have been shown as a result of 

piano practicing (Bengtsson et al., 2005) and handedness (Buchel et al., 2004). 

Fractional anisotropy also supports tractography, the reconstruction of white matter tracts 

between voxels in two regions, a seed region and a target region. This technique has already 

demonstrated impressive left-right differences in the arcuate fasiculus related to language 

laterality (Nucifora, Verma, Melhem, Gur, & Gur, 2005). Several techniques are currently being 

used for tractography that have not yet been standardized. Some of the current difficulties are not 

being able to distinguish between adjacent tracts producing errors in “jumping” across tracts; 

difficulties in following tracts that make sharp turns requiring multiple regions of interest being 

used to track the fibers at multiple points in their trajectories; and difficulties in resolving when 

fiber tracts cross each other such as between the corona radiata and the superior longitudinal 

fasiculus (Mukherjee, 2005). These problems are compounded in stroke although use of 

tractography in subacute and chronic stroke has revealed changes in white matter tracts over time 

when patients are followed longitudinally and may be useful in predicting patient outcome 

(Mukherjee, 2005). On the other hand, the degree of secondary Wallerian degeneration three 

months post stroke may also alter results (Liang et al., 2007). The potential of this application for 

relating the integrity of tracts to recovery is exciting (Moller et al., 2007) but caution is needed 

regarding technical issues. 

Finally the combination of using both functional neuroimaging connectivity analysis and 

tractography holds great promise for the future in examining changes in brain anatomy and 

function post brain injury (Cherubini et al., 2007; Guye et al., 2003). The use of both anatomical 

and functional neuroimaging will allow examination of how behavioral intervention can alter 

brain structure and function in both normalcy and different disease states (Bozzali & Cherubini, 

2007). 

iii. Translational Studies 

Translational studies can determine the degree of neural plasticity induced within the neuronal 

substrates of the motor control system by training within animals, healthy humans and following 

disease or injury. Determining the degree of possible plasticity in the speech motor control 

system is crucial because speech is thought to have automaticity once development is complete 

following adolescence (A. Smith & Zelaznik, 2004). Neurophysiological studies of training 

effects at different points in the lifespan are needed to determine the extent to which the nervous 

system for speech can be altered. 
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Studies are needed to determine the degree to which the neural substrates for speech production 

can be altered following neurological diseases or disorders. Recovery of speech may not be 

possible if injury involves white matter tracts between particular brain regions (Naeser, Palumbo, 

Helm-Estabrooks, Stiassny-Eder, & Albert, 1989). On the other hand, if certain white matter 

tracts are spared then improved functioning within the speech neural control system may be 

possible (Riecker, Wildgruber, Grodd, & Ackermann, 2002). Careful studies addressing this 

hypothesis may improve our understanding of why speech recovery is limited in some persons. 

For example, cortical grey matter volume becomes increased with intensive long term training in 

musicians (Gaser & Schlaug, 2003). We need to know if changes are possible with intensive 

speech training in brain-injured adults. 

iv. Characteristics of Feasibility Studies 

The purpose of feasibility studies is to determine how neural plasticity can be modified to bring 

about lasting change in performance after nervous system injury or in neurological disease. Such 

studies are ongoing in limb control following stroke, where both performance and the 

physiological function of the neural substrates involved are examined during training (Stinear & 

Byblow, 2004). Outcome measures of speech communication or motor control could assess how 

speech performance has changed while neurophysiological methods can be used to study the 

brain mechanisms underlying that change. As mentioned previously, neurophysiological 

methods for quantifying change in neural functioning include: TMS to assess corticobulbar 

connectivity; fMRI or MEG to examine network connectivity; and PET to measure changes in 

neurotransmission such as dopamine release. By understanding how the CNS responds to 

training, training methods that can produce long term changes in brain function can be identified. 

The natural process of a disease must be well-known before determining if intervention has 

altered that process. There will be individual differences in both the pattern of cerebral 

dysfunction and the recovery process. However, careful study of the overall pattern of change in 

brain dysfunction after injury will serve as a basis for developing interventions aimed at 

enhancing recovery through training. The purpose of the interventions is to alter the natural 

history over time. Figure 1a provides an example of comparing two interventions while 

attempting to alter the natural process following a stroke. The natural process involves the initial 

period of injury, the onset of the spontaneous recovery period and then a long period of limited 

change. By examining the effects of interventions at different times during the recovery process, 

the interaction between intervention and the time post brain injury can be examined. Here the 

natural process of recovery for both behavior and brain function are contrasted during two 

different interventions. 

 

Figure 1 
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Schematic diagrams of the design of feasibility studies to determine the neural mechanisms involved in 

the natural process and intervention for speech motor control disorders during recovery from brain 

injury following a stroke or brain trauma (Figure ... 

One could argue that it might be better to first conduct controlled treatment trials to identify 

which treatments are most effective and then to determine how those treatments modify brain 

function. Controlled treatment trials are expensive and take many years to complete. 

Alternatively, small exploratory studies could identify those treatment approaches that can most 

readily produce rapid and long term changes in brain function for re-establishing speech motor 

control. In this way, treatments with the greatest potential could be identified before conducting 

controlled clinical trials. Some of the clinical neurophysiological techniques discussed, such as 

TMS, EEG and MEG, are non-invasive, relatively inexpensive and increasingly available in 

many medical centers. These techniques could be applied in small feasibility studies aimed at 

identifying training approaches that can induce behavioral recovery and long-term improvement 

in brain function for future use in large scale controlled clinical trials. 

The natural history of various neurodegenerative diseases differs (Figure 1b). Here the aim of 

intervention will be to reduce the rate of behavioral impairment and loss of neural function. After 

diagnosis, there may be some recovery as the person adapts to the disease, then with intervention 

some reduction in the rate of increasing behavioral impairment and reduced neurophysiological 

function may occur depending upon treatment effectiveness. 

An example of a feasibility study in a neurodegenerative disease process such as PD (Figure 1b) 

might include fluorodopa PET to determine the extent of the disease in each participant. Then, 

the interaction between individual differences in disease extent and the behavioral and neural 

consequences of intervention can be studied. MEG measures of neural functioning such as the 

interval between beta desynchronization and speech initiation could be used 

(Muthukumaraswamy, Johnson, Gaetz, & Cheyne, 2006). Comparisons could be made between 

the behavioral improvements and neurophysiological processing changes with different 

interventions. If participants are randomly assigned to treatment groups identification of which 

treatment has potential for altering both brain functioning and behavior could occur 
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VI. Models of Feasibility Studies in Speech Motor Control Disorders 

Examples of feasibility studies for the study of neural plasticity during intervention in speech 

motor control disorders are presented to illustrate how such designs might test hypotheses 

regarding the relationship between changes in speech production behavior and the neural 

mechanisms involved. These examples certainly could be elaborated on and are provided only 

for illustrative purposes. Most are treatment comparisons with one intervention being the 

experimental intervention and the other being the control. Comparisons between two conditions 

are needed to determine if the changes in the experimental condition are specific to that 

condition, and not a placebo effect present when any treatment is provided. 

i. Speech Mechanisms Involved in Recovery Post Bilateral Internal Capsule 

Lesions Following Stroke 
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One example is to study the outcome of the speech disturbance due to bilateral lesions involving 

the internal capsule post stroke. Bilateral internal capsule lesions could affect both corticobulbar 

and corticospinal axonal pathways interfering with cortical control of the motor neurons for both 

cranial and spinal systems. For that reason such lesions could produce significant deficits in 

speech motor control (Naeser, Palumbo, Helm-Estabrooks, Stiassny-Eder, & Albert, 1989). The 

purpose of the proposed study would be to determine if intervention can alter speech production 

and brain functioning in affected adults. Two interventions could be compared, one addressing 

specific speech motor control deficits versus a control intervention. Examples of possible 

outcome measures might include measures of speech intelligibility, acceptability and speech rate. 

Methods for the study of brain mechanisms could include: MEG to examine the presence/timing 

of beta desynchronization over M1 for speech; MRI diffusion tensor imaging to quantify deficits 

in white matter tracts using fractional anisotropy (Smith et al., 2006); tractography to compare 

the integrity of the corticobulbar and corticospinal white matter (Moller et al., 2007), and TMS to 

quantify changes in corticospinal and interhemispheric functional connectivity (Chouinard, 

Leonard, & Paus, 2006);. Speech changes over time in the experimental and control therapy 

groups could be compared and the relationships between changes in speech function and brain 

function could be examined within each group. 

ii. Genotype/Phenotype Relationships in Spinocerebellar Disease 

This example would address questions related to the role of the cerebellum in speech and brain 

mechanisms. There are several genetic forms of spinocerebellar disease which can cause 

degeneration in specific regions of the cerebellum (Day, Schut, Moseley, Durand, & Ranum, 

2000; Mariotti & Di Donato, 2001). By studying the natural history of disease and whether or not 

intervention can alter that history, it could be learned (a) what speech impairments occur with 

neurodegeneration of specific regions of the cerebellum, and (b) whether intervention can alter 

the cerebellar dysfunction for speech. Particular interventions might address the speech rhythm 

and rate deficits often associated with ataxic dysarthria compared with a more general approach 

to speech rehabilitation. Outcome measures could include those for speech acceptability and 

intelligibility and those could be related to cerebellar and cortical activation during speech on 

fMRI. Event-related BOLD could measure activity changes for speech in contrast with rest with 

limited movement artifacts in controls (Loucks, Poletto, Simonyan, Reynolds, & Ludlow, 2007) 

as well as in patients. Voxel based morphometry could be used to measure white matter and grey 

matter volumes in the cerebellum in particular (Daniels et al., 2006). The purpose would be to 

determine the effects of cerebellar disease on cortical functioning for speech early in the disease 

process and if it could be modified by intervention. 

iii. Mechanisms Involved in Mutism Recovery after Surgery for Posterior Fossa 

Tumor in Childhood 

Another illustrative example is to identify the brain mechanisms involved in mutism and how 

such mechanisms are altered during the natural recovery process from posterior fossa tumors in 

children. Although recovery is frequent, it is not clear whether or not intervention alters the 

course of recovery (Arslantas, Erhan, Emre, & Esref, 2002; Ozgur, Berberian, Aryan, Meltzer, & 

Levy, 2006; Steinbok, Cochrane, Perrin, & Price, 2003). For this study, participants would be 

randomized between experimental and control groups to determine if intervention alters the 

natural recovery process. The interventions could be singing along with videos (Ozgur, 
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Berberian, Aryan, Meltzer, & Levy, 2006), versus a sham intervention and outcome measures 

would include the rate of recovery of vocalized speech for communication. Measures of brain 

mechanisms would include fMRI of the cortical and subcortical networks involved in voice 

production and diffusion tensor imaging of white matter tracts with fractional anisotropy (Smith 

et al., 2006). 
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VII. Collaborative Research Consortiums 

The benefits of collaboration within a community of specialists in speech motor control disorders 

became apparent amongst the workgroup members when discussing examples of feasibility 

studies. Adults with specific disorders are usually not available in adequate numbers in single 

centers and multiple center collaborations are likely to be needed for research on neural plasticity 

and speech motor control. Further, by working as a community, speech disorders specialists 

could develop consensus on diagnostic, assessment and intervention methods for use in 

feasibility studies. 

i. Clinical Trials Consortium 

Feasibility studies could be fostered by collaborations between speech specialists with expertise 

in speech intervention and outcome measures and neuroscientists with expertise in neural 

imaging and clinical neurophysiology, and neurosurgery. A consortium of such groups would 

help to develop consensus on: speech outcomes; measures of neural substrates involved in 

speech motor control; designs for feasibility studies; as well as allow interaction with other 

disciplines for the study of neural plasticity in relation with speech motor control. 

ii. Collaborative Efforts 

An example of a high priority study that could be conducted by such a consortium would be a 

study on the effects of deep brain stimulation on speech and voice motor control. Current PD 

rating scales do not assess speech, voice and swallowing in detail. For example, The Unified 

Parkinson Disease Rating Scale collapses all three into one rating category (Fahn, Elton, & 

Committee, 1987). Deep brain stimulation in the subthalamic nucleus (STN) in persons with PD 

can be beneficial to limb motor functions and improvements are related to the restoration of 

higher levels of brain activity in the presupplementary motor area, and premotor cortices (Sestini 

et al., 2005). DBS in PD may cause some persons to deteriorate in voice, speech and swallowing, 

while others improve (Dromey, Kumar, Lang, & Lozano, 2000; Gentil, Garcia-Ruiz, Pollak, & 

Benabid, 2000; Pinto et al., 2005; Rascol et al., 2003; Rousseaux et al., 2004; Schulz, Peterson, 

Sapienza, Greer, & Friedman, 1999). Side effects often occur in these functions as the intensity 

or frequency of stimulation is increased. Other surgical techniques have had detrimental effects 

on these functions in PD; for example, bilateral pallidotomy with ablation was detrimental to 

speech in some persons (Schulz, Peterson, Sapienza, Greer, & Friedman, 1999). Several authors 

have concluded that speech is often not benefited to the same extent as limb control and may be 

unrelated to limb control following bilateral pallidotomy, thalamotomy, thalamic stimulation and 

in some cases of stimulation in the subthalamic nucleus (Dromey, Kumar, Lang, & Lozano, 

2000; Gentil, Garcia-Ruiz, Pollak, & Benabid, 2000; Schulz, Peterson, Sapienza, Greer, & 

Friedman, 1999). The disparity between limb control benefits and speech/voice and swallowing 
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following surgical treatment of movement disorders (Dromey, Kumar, Lang, & Lozano, 

2000; Rascol et al., 2003) makes the mapping of speech motor control within the basal ganglia of 

both clinical and basic importance. 

The purpose of a controlled feasibility study would be to determine which factors predict adverse 

events or improvements in speech, voice and swallowing with deep brain stimulation (DBS) in 

the STN in a wide range of operated and unoperated persons with PD. Factors that could be 

examined include: persons’ speech, voice and swallowing functioning and the brain activation 

abnormalities prior to implantation; lead location as judged from recording/stimulation during 

placement including proximity to the internal capsule and/or location within the STN; the active 

stimulator contacts, type of stimulator, unipolar versus bipolar, intensity, pulse width, and rate of 

DBS; the extent of PD disease progression; and, the effect of DBS on the axial symptoms of gait 

and balance and speech, voice and swallowing in comparison with a control group treated with 

conventional therapy over the same time period. 

Although some studies of these issues have been initiated at a few institutions, it is estimated that 

several high volume centers would be needed to test each of the factors independent of a 

particular neurosurgical team. Intake profiles might include fluorodopa PET scanning, 

neurophysiological studies of brain activation for voice, speech and swallowing and multiple 

baseline assessments using common methods for voice, speech and swallowing functioning 

across centers. Such a study could have an immediate benefit in aiding future persons with PD 

by avoiding those factors found to predict adverse outcomes in speech, voice and swallowing 

with DBS. 

iii. Education and Dissemination 

To increase research attention given to the role of brain mechanisms and neural plasticity for 

developing interventions in speech motor control disorders, new investigators will be needed. A 

consortium of collaborative teams on neural plasticity and recovery and rehabilitation of speech 

disorders could enhance research in this area by: inviting speakers from basic neuroscience and 

clinical neurophysiology to present at meetings on speech motor control and disorders; 

encouraging the involvement of neuroscientists in doctoral education programs in human 

communication sciences and disorders (CSD); providing continuing education seminars and 

workshops between neuroscience and CSD; assisting investigators with developing collaborative 

teams between neuroscientists and CSD in their own institutions; encouraging new CSD Ph.D.’s 

to take postdoctoral training in neuroscience; and assisting new faculty who are seeking 

consultants in neuroscience for advice during the development of their research program. 
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